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the density of a liquid, we are referring to its macroscopic density. We
regard it as a continuous fluid and ignore its discrete molecular
constitution.

The field due to a continuous charge distribution can be obtained in
much the same way as for a system of discrete charges, Eq. (1.10). Suppose
a continuous charge distribution in space has a charge density p. Choose
any convenient origin O and let the position vector of any point in the
charge distribution be r. The charge density p may vary from point to
point, i.e., it is a function of r. Divide the charge distribution into small
volume elements of size AV. The charge in a volume element AVis pAV.

Now, consider any general point P (inside or outside the distribution)
with position vector R (Fig. 1.24). Electric field due to the charge pAVis
given by Coulomb’s law:

1 pAV_,
dne, 1% ¢ (1.26)
where r”is the distance between the charge element and P, and ¥'isa
unit vector in the direction from the charge element to P. By the
superposition principle, the total electric field due to the charge
distribution is obtained by summing over electric fields due to different
volume elements:

E= ! s £ AZV

4ng, alav

Note that p, r, ¢ all can vary from point to peint. In a strict
mathematical method, we should let AV—0 and the sum then becomes
an integral; but we omit that discussion here, for simplicity. In short,
using Coulomb’s law and the superposition principle, electric field can
be determined for any charge distribution, discrete or continuous or part
discrete and part continuous.

1.14 Gauss’s Law

As a simple application of the notion of electric flux, let us consider the
total flux through a sphere of radius r, which encloses a point charge g
at its centre. Divide the sphere into small area elements, as shown in
Fig. 1.25.

The flux through an area element AS is

AE =

by (1.27)

Ap=E.AS= 4‘“:0 = T AS (1.28)
where we have used Coulomb’s law for the electric field due to a single
charge q. The unit vector T is along the radius vector from the centre to
the area element. Now, since the normal to a sphere at every point is
along the radius vector at that point, the area element AS and T have
the same direction. Therefore,

q
Ag = ———AS
=ty 1 (1.29)

since the magnitude of a unit vector is 1.
The total flux through the sphere is obtained by adding up flux
through all the different area elements:

FIGURE 1.25 Flux

through a sphere

enclosing a point
charge q at its centre.

33



% Physics

_a

SAS

4- =

all AS 41‘;50 T

Since each area element of the sphere is at the same
distance r from the charge,

FIGURE 1.26 Calculation of the _ q _ q

flux of uniform electric field " dne 2 HHEASA
through the surface of a cylinder. °
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Now S, the total area of the sphere, equals 4nr”, Thus,
2_ 9
:Korzx Anr =g (1.30)

Equation (1.30) is a simple illustration of a general result of
electrostatics called Gauss's law.

We state Gauss’s law without proof:

Electric flux through a closed surface S

=q/e, (1.31)

q = total charge enclosed by S.

The law implies that the total electric flux through a closed surface is
zero if no charge is enclosed by the surface. We can see that explicitly in
the simple situation of Fig. 1.26.

Here the electric field is uniform and we are considering a closed
cylindrical surface, with its axis parallel to the uniform field E. The total
flux ¢ through the surface is ¢ = ¢, + ¢, + ¢,, where ¢, and ¢, represent
the flux through the surfaces 1 and 2 (of circular cross-section) of the
cylinder and ¢, is the flux through the curved cylindrical part of the
closed surface. Now the normal to the surface 3 at every point is
perpendicular to E, so by definition of flux, ¢, = 0. Further, the out
normal to 2 is along E while the outward normal to 1 is opposit

Therefore,
¢, =-ES,, ¢,=+ES,
S,=85,=5

where S is the area of circular cross-section. Thus, the total flux is zero,

as expected by Gauss’s law. Thus, whenever you find that the net electric

flux through a closed surface is zero, we conclude that the total charge
contained in the closed surface is zero.

The great significance of Gauss’s law Eq. (1.31), is that it is true in
general, and not only for the simple cases we have considered above. Let
us note some important points regarding this law:

(i) Gauss’s law is true for any closed surface, no matter what its shape
or size.

(i) The term g on the right side of Gauss’s law, Eq. (1.31), includes the
sum of all charges enclosed by the surface. The charges may be located
anywhere inside the surface.

(iii) In the situation when the surface is so chosen that there are some
charges inside and some outside, the electric field [whose flux appears
on the left side of Eq. (1.31)] is due to all the charges, both inside and
outside S. The term g on the right side of Gauss's law, however,

34 represents only the total charge inside S.



Electric Charges
and Fields

(iv) The surface that we choose for the application of Gauss’s law is called
the Gaussian surface. You may choose any Gaussian surface and
apply Gauss’s law. However, take care not to let the Gaussian surface
pass through any discrete charge. This is because electric field due
to a system of discrete charges is not well defined at the location of
any charge. (As you go close to the charge, the field grows without
any bound.) However, the Gaussian surface can pass through a
continuous charge distribution.
Gauss'’s law is often useful towards a much easier calculation of the
electrostatic field when the system has some symmetry. This is
facilitated by the choice of a suitable Gaussian surface.
(vi) Finally, Gauss's law is based on the inverse square dependence on
distance contained in the Coulomb’s law. Any violation of Gauss’s
law will indicate departure from the inverse square law.

(\%

Example 1.11 The electric field components in Fig. 1.27 are
E = ox'%, E, = E, = 0, in which & = 800 N/C m'/*. Calculate (a) the
flux through the cube, and (b) the charge within the cube. Assume
that a = 0.1 m.

%n

FIGURE 1.27

Solution

(a) Since the electric field has only an x component, for faces
perpendicular to x direction, the angle between E and AS is
+ /2. Therefore, the flux ¢ = E.AS is separately zero for each face
of the cube except the two shaded ones. Now the magnitude of
the electric field at the left face is
EL = a2 = ga'’?
(x = a at the left face).
The magnitude of electric field at the right face is
Eg=a X2 = o (2a)'?
(x = 2a at the right face).
The corresponding fluxes are

¢,= E,-AS = ASE, - n, =E, AS cosf = -E, AS, since 8 = 180°
=-Ed

¢n= ER-AS = ER AS cos@ = ER AS, since 8= 0°
=E.d

Net flux through the cube

=
é

[
=
-
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bo+ 0, = Eid — E,@ = & (E,— E) = ad® [20)'/* - a'/?]

= aa®? (\/5— l)

~ 800 (0.1)%2 (\E—l)
=1.05Nm?C’

(b) We can use Gauss's law to find the total charge g inside the cube.
We have ¢ = q/¢; or q = ¢¢,. Therefore.

g=1.05x8.854x 102C =9.27 x 10 C.

Example 1.12 An electric field is uniform, and in the positive x
direction for positive x, and uniform with the same magnitude but in
the negative x direction for negative x. It is given that E = 200 i N/C
for x> 0 and E = -200 i N/C for x < 0. A right circular cylinder of
length 20 cm and radius 5 cm has its centre at the origin and its axis
along the x-axis so that one face is at x = +10 cm and the other is at
x =-10 cm (Fig. 1.28). (a) What is the net outward flux through each
flat face? (b) What is the flux through the side of the cylinder?
(c) What is the net outward flux through the cylinder? (d) What is the
net charge inside the cylinder?

Solution

(a)

(b)

(O]

(d) The net charge within the cylinder can be found by using Gauss's

We can see from the figure that on the left face E and AS are
parallel. Therefore, the outward flux is

¢,= E-AS = - 200 i-AS

= +200 AS, since 1:AS=- AS

= i200xa008) - 1B7NIIC

On the right face, E and AS are parallel and therefore

¢p= E:AS = + 1.57 Nm?C

For any point on the side of the cylinder E is perpendicular to
AS and hence E-AS = 0. Therefore, the flux out of the side of the
cylinder is zero.

Net outward flux through the cylinder

2-157¢1567 0 314 Nu C

Y
AS
5cm
Be —E
AS © AS i
«
x=-10cm 20cm x=10 cm
FIGURE 1.28

law which gives

q= &
= 3.14x8.854 x 1072 C
= 2.78 x 10! C
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1.15 APPLICATIONS OF GAuss’s Law

The electric field due to a general charge distribution is, as seen above,
given by Eq. (1.27). In practice, except for some special cases, the
summation (or integration) involved in this equation cannot be carried

out to give electric field at every point in
space. For some symmetric charge
configurations, however, it is possible to
obtain the electric field in a simple way using
the Gauss'’s law. This is best understood by
some examples.

1.15.1 Field due to an infinitely
long straight uniformly
charged wire

Consider an infinitely long thin straight wire
with uniform linear charge density A. The wire
is obviously an axis of symmetry. Suppose we
take the radial vector from O to P and rotate it
around the wire. The points P, P, P” so
obtained are completely equivalent with
respect to the charged wire. This implies that
the electric field must have the same magnitude
at these points. The direction of electric field at
every point must be radial (outward if A > 0,
inward if A < 0). This is clear from Fig. 1.29.

Consider a pair of line elements P, and P,
of the wire, as shown. The electric fields
produced by the two elements of the pair when
summed give a resultant electric field which
is radial (the components normal to the radial
vector cancel). This is true for any such pair
and hence the total field at any point P is
radial. Finally, since the wire is infinite,
electric field does not depend on the position
of P along the length of the wire. In short, the
electric field is everywhere radial in the plane
cutting the wire normally, and its magnitude
depends only on the radial distance r.

To calculate the field, imagine a cylindrical
Gaussian surface, as shown in the Fig. 1.29(b).
Since the field is everywhere radial, flux
through the two ends of the cylindrical
Gaussian surface is zero. At the cylindrical
part of the surface, E is normal to the surface
at every point, and its magnitude is constant,
since it depends only on r. The surface area
of the curved part is 2xrl, where lis the length
of the cylinder.
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FIGURE 1.29 (a) Electric field due to an
infinitely long thin straight wire is radial,
(b) The Gaussian surface for a long thin
wire of uniform linear charge density.
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Flux through the Gaussian surface

= flux through the curved cylindrical part of the surface
= Ex2nrl

The surface includes charge equal to A . Gauss's law then gives
Ex2nrl= M/so

A

2ng,r

ie., E

Vectorially, E at any point is given by
A .
n

:rgor (1.32)

where 1 is the radial unit vector in the plane normal to the wire passing
through the point. E is directed outward if A is positive and inward if A is
negative.

Note that when we write a vector A as a scalar multiplied by a unit
vector, i.e., as A=A &, the scalar Ais an algebraic number. It can be
negative or positive. The direction of A will be the same as that of the unit
vector aif A> 0 and opposite to a if A < 0. When we want to restrict to
non-negative values, we use the symbol |A]and call it the modulus of A.
Thus, |A[20.

Also note that though only the charge enclosed by the surface (Al)
was included above, the electric field E is due to the charge on the entire
wire. Further, the assumption that the wire is infinitely long is crucial.
Without this assumption, we cannot take E to be normal to the curved
part of the cylindrical Gaussian surface. However, Eq. (1.32) is
approximately true for electric field around the central portions of a long
wire, where the end effects may be ignored.

1.15.2 Field due to a uniformly charged infinite plane sheet

Let ¢ be the uniform surface charge density of an infinite plane sheet
(Fig. 1.30). We take the x-axis normal to the given plane. By symmetry,
the electric field will not depend on y and z coordinates and its directior 3 7
at every point must be parallel to the x-direction.
Surface We can take the Gaussian surface to be a
z  charge density o rectangular parallelepiped of cross sectional area
A, as shown. (A cylindrical surface will also do.) As
seen from the figure, only the two faces 1 and 2 will
contribute to the flux; electric field lines are parallel
to the other faces and they, therefore, do not
contribute to the total flux.

The unit vector normal to surface 1 is in —x
direction while the unit vector normal to surface 2
L I T e e 3 is in the +x direction. Therefore, flux E.AS through
both the surfaces are equal and add up. Therefore
the net flux through the Gaussian surface is 2 EA.
The charge enclosed by the closed surface is cA.
} Therefore by Gauss's law,

3URE 1.30 Gaussian surface for a
ormly charged infinite plane sheet.
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2 EA=cA/s,
or, E= G/ZEO
Vectorically,
g .
E=—n
2¢, (1.33)

where #i is a unit vector normal to the plane and going away from it.

E is directed away from the plate if ¢ is positive and toward the plate
if o is negative. Note that the above application of the Gauss’ law has
brought out an additional fact: E is independent of x also.

For a finite large planar sheet, Eq. (1.33) is approximately true in the
middle regions of the planar sheet, away from the ends.

1.15.3 Field due to a uniformly charged thin spherical shell

Let ¢ be the uniform surface charge density of a thin spherical shell of
radius R (Fig. 1.31). The situation has obvious spherical symmetry. The
field at any point P, outside or inside, can depend only on r (the radial

distance from the centre of the shell to the point) and must be radial (i.e.,

along the radius vector).

(i) Field outside the shell: Consider a point P outside the Gaussian surface
shell with radius vector r. To calculate E at P, we take the g ace charge -~ "~*..
Gaussian surface to be a sphere of radius r and with centre  densityc .
O, passing through P. All points on this sphere are equivalent / <
relative to the given charged configuration. (That is what we !
mean by spherical symmetry.) The electric field at each point !
of the Gaussian surface, therefore, has the same magnitude \ /
E and is along the radius vector at each point. Thus, E and AN

AS at every point are parallel and the flux through each e

element is EAS. Summing over all AS, the flux through the (a)

Gaussian surface is E x 4 © r?. The charge enclosed is

ox4nR2 By Gauss'’s law Surface charge G:E_Srsmn
density o

38

E><47rr2=1‘17'5R2
£o

o R? . q
2 = 2
g - 4dmeg,r

where g = 4 7R? ois the total charge on the spherical shell.

Or, E=

Vectorially, (b)
q . FIGURE 1.31 Gaussian
E= T
47:(;0 r (1.34) surfaces for a point with

The electric field is directed outward if g > 0 and inward if @r>R B r<Rr

g < 0. This, however, is exactly the field produced by a charge
qplaced at the centre O. Thus for points outside the shell, the field due
to a uniformly charged shell is as if the entire charge of the shell is
concentrated at its centre.
(ii) Field inside the shell: In Fig. 1.31(b), the point P is inside the
shell. The Gaussian surface is again a sphere through P centred at O. 39



< E QA <

oSmesmaasmany ssmepyias Sassies s sass s Sest Sastes s ases ot e Saas srassces e

centrated at its centre.

Field inside the shell: In Fig. 1.31(b), the point P is inside the
shell. The Gaussian surface is again a sphere through P centred at O. 39
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The flux through the Gaussian surface, calculated as before, is

E x 4 nr”. However, in this case, the Gaussian surface encloses no

charge. Gauss’s law then gives

Exdnr’=0

ie., E=0 (r<R) (1.35)
that is, the field due to a uniformly charged thin shell is zero at all points
inside the shell*. This important result is a direct consequence of Gauss's
law which follows from Coulomb’s law. The experimental verification of
this result confirms the 1/r* dependence in Coulomb’s law.

Example 1.13 An early model for an atom considered it to have a
positively charged point nucleus of charge Ze, surrounded by a
uniform density of negative charge up to a radius R. The atom as a
whole is neutral. For this model, what is the electric field at a distance
r from the nucleus?

FIGURE 1.32

Solution The charge distribution for this model of the atom is as
shown in Fig. 1.32. The total negative charge in the uniform spherical
charge distribution of radius R must be -Z e, since the atom (nucleus
of charge Z e + negative charge) is neutral. This immediately gives us
the negative charge density p, since we must have 3 9

41R°
3

p,=0-Ze

3Ze

4nR®
To find the electric field E(r) at a point P which is a distance r away
from the nucleus, we use Gauss’s law. Because of the spherical
symmetry of the charge distribution, the magnitude of the electric
field E(r) depends only on the radial distance, no matter what the
direction of r. Its direction is along (or opposite to) the radius vector r
from the origin to the point P. The obvious Gaussian surface is a
spherical surface centred at the nucleus. We consider two situations,
namely, r< Rand r> R.

(i) r < R : The electric flux ¢ enclosed by the spherical surface is

¢ =E(x4mn e
where E (r) is the magnitude of the electric field at r. This #

OF 2=

ExamrLE 1.13

*

Compare this with a uniform mass shell discussed in Secti
0 Textbook of Physics.
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the field at any point on the spherical Gaussian surface has the
same direction as the normal to the surface there, and has the same
magnitude at all points on the surface.
The charge g enclosed by the Gaussian surface is the positive nuclear
charge and the negative charge within the sphere of radius r,
3
e, G1=2@ & Loz
Substituting for the charge density p obtained earlier, we have
s
q=Ze-Z e%
Gauss’s law then gives,
Ze (i_ r
4ms,

E(r)= e R—a). r<R

The electric field is directed radially outward.

(ii) r > R: In this case, the total charge enclosed by the Gaussian
spherical surface is zero since the atom is neutral. Thus, from Gauss’s
law,

E(Mx4n r =0 or E(N=0;: r>R

At r = R, both cases give the same result: E = 0.

€1 1T J1dNVXH

ON SYMMETRY OPERATIONS

In Physics, we often encounter systems with various symmetries. Consideration of these
symmetries helps one arrive at results much faster than otherwise by a straightforward
calculation. Consider, for example an infinite uniform sheet of charge (surface charge
density o) along the y-z plane. This system is unchanged if (a) translated parallel to the
y-zplane in any direction, (b) rotated about the x-axis through any angle. As the system
is unchanged under such symmetry operation, so must its properties be. In particular,
in this example, the electric field E must be unchanged.

Translation symmetry along the y-axis shows that the electric field must be the same
at a point (0, Y, 0) as at (0, Y, 0). Similarly translational symmetry along the z-axis
shows that the electric field at two point (0, 0, z)) and (0, 0, z,) must be the same. Bv
using rotation symmetry around the x-axis. we can conclude that E must ’
perpendicular to the y-z plane, that is, it must be parallel to the x-direction. 4 0

Try to think of a symmetry now which will tell you that the magnitude of the electri.
field is a constant, independent of the x-coordinate. It thus turns out that the magnitude
of the electric field due to a uniformly charged infinite conducting sheet is the same at all
points in space. The direction, however, is opposite of each other on either side of the
sheet.

Compare this with the effort needed to arrive at this result by a direct calculation

using Coulomb’s law.

41



